Copied to
clipboard

G = C7×C423C4order 448 = 26·7

Direct product of C7 and C423C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C7×C423C4, C423C28, (C4×C28)⋊6C4, (C2×Q8)⋊2C28, (Q8×C14)⋊4C4, C23.4(C7×D4), C23⋊C4.2C14, (C22×C14).4D4, C4.4D4.2C14, C14.35(C23⋊C4), (D4×C14).177C22, (C2×C4).2(C2×C28), C2.9(C7×C23⋊C4), (C2×C28).13(C2×C4), (C2×D4).4(C2×C14), (C7×C23⋊C4).4C2, (C7×C4.4D4).11C2, C22.13(C7×C22⋊C4), (C2×C14).76(C22⋊C4), SmallGroup(448,158)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C7×C423C4
C1C2C22C23C2×D4D4×C14C7×C23⋊C4 — C7×C423C4
C1C2C22C2×C4 — C7×C423C4
C1C14C2×C14D4×C14 — C7×C423C4

Generators and relations for C7×C423C4
 G = < a,b,c,d | a7=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=b2c-1 >

Subgroups: 178 in 70 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C42, C22⋊C4, C2×D4, C2×Q8, C28, C2×C14, C2×C14, C23⋊C4, C4.4D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C423C4, C4×C28, C7×C22⋊C4, D4×C14, Q8×C14, C7×C23⋊C4, C7×C4.4D4, C7×C423C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C14, C22⋊C4, C28, C2×C14, C23⋊C4, C2×C28, C7×D4, C423C4, C7×C22⋊C4, C7×C23⋊C4, C7×C423C4

Smallest permutation representation of C7×C423C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(8 43 31 99)(9 44 32 100)(10 45 33 101)(11 46 34 102)(12 47 35 103)(13 48 29 104)(14 49 30 105)(15 26 38 112)(16 27 39 106)(17 28 40 107)(18 22 41 108)(19 23 42 109)(20 24 36 110)(21 25 37 111)(71 95)(72 96)(73 97)(74 98)(75 92)(76 93)(77 94)(78 87)(79 88)(80 89)(81 90)(82 91)(83 85)(84 86)
(1 50 69 59)(2 51 70 60)(3 52 64 61)(4 53 65 62)(5 54 66 63)(6 55 67 57)(7 56 68 58)(8 43 31 99)(9 44 32 100)(10 45 33 101)(11 46 34 102)(12 47 35 103)(13 48 29 104)(14 49 30 105)(15 112 38 26)(16 106 39 27)(17 107 40 28)(18 108 41 22)(19 109 42 23)(20 110 36 24)(21 111 37 25)(71 83 95 85)(72 84 96 86)(73 78 97 87)(74 79 98 88)(75 80 92 89)(76 81 93 90)(77 82 94 91)
(1 13 85 16)(2 14 86 17)(3 8 87 18)(4 9 88 19)(5 10 89 20)(6 11 90 21)(7 12 91 15)(22 61 43 73)(23 62 44 74)(24 63 45 75)(25 57 46 76)(26 58 47 77)(27 59 48 71)(28 60 49 72)(29 83 39 69)(30 84 40 70)(31 78 41 64)(32 79 42 65)(33 80 36 66)(34 81 37 67)(35 82 38 68)(50 104 95 106)(51 105 96 107)(52 99 97 108)(53 100 98 109)(54 101 92 110)(55 102 93 111)(56 103 94 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (8,43,31,99)(9,44,32,100)(10,45,33,101)(11,46,34,102)(12,47,35,103)(13,48,29,104)(14,49,30,105)(15,26,38,112)(16,27,39,106)(17,28,40,107)(18,22,41,108)(19,23,42,109)(20,24,36,110)(21,25,37,111)(71,95)(72,96)(73,97)(74,98)(75,92)(76,93)(77,94)(78,87)(79,88)(80,89)(81,90)(82,91)(83,85)(84,86), (1,50,69,59)(2,51,70,60)(3,52,64,61)(4,53,65,62)(5,54,66,63)(6,55,67,57)(7,56,68,58)(8,43,31,99)(9,44,32,100)(10,45,33,101)(11,46,34,102)(12,47,35,103)(13,48,29,104)(14,49,30,105)(15,112,38,26)(16,106,39,27)(17,107,40,28)(18,108,41,22)(19,109,42,23)(20,110,36,24)(21,111,37,25)(71,83,95,85)(72,84,96,86)(73,78,97,87)(74,79,98,88)(75,80,92,89)(76,81,93,90)(77,82,94,91), (1,13,85,16)(2,14,86,17)(3,8,87,18)(4,9,88,19)(5,10,89,20)(6,11,90,21)(7,12,91,15)(22,61,43,73)(23,62,44,74)(24,63,45,75)(25,57,46,76)(26,58,47,77)(27,59,48,71)(28,60,49,72)(29,83,39,69)(30,84,40,70)(31,78,41,64)(32,79,42,65)(33,80,36,66)(34,81,37,67)(35,82,38,68)(50,104,95,106)(51,105,96,107)(52,99,97,108)(53,100,98,109)(54,101,92,110)(55,102,93,111)(56,103,94,112)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (8,43,31,99)(9,44,32,100)(10,45,33,101)(11,46,34,102)(12,47,35,103)(13,48,29,104)(14,49,30,105)(15,26,38,112)(16,27,39,106)(17,28,40,107)(18,22,41,108)(19,23,42,109)(20,24,36,110)(21,25,37,111)(71,95)(72,96)(73,97)(74,98)(75,92)(76,93)(77,94)(78,87)(79,88)(80,89)(81,90)(82,91)(83,85)(84,86), (1,50,69,59)(2,51,70,60)(3,52,64,61)(4,53,65,62)(5,54,66,63)(6,55,67,57)(7,56,68,58)(8,43,31,99)(9,44,32,100)(10,45,33,101)(11,46,34,102)(12,47,35,103)(13,48,29,104)(14,49,30,105)(15,112,38,26)(16,106,39,27)(17,107,40,28)(18,108,41,22)(19,109,42,23)(20,110,36,24)(21,111,37,25)(71,83,95,85)(72,84,96,86)(73,78,97,87)(74,79,98,88)(75,80,92,89)(76,81,93,90)(77,82,94,91), (1,13,85,16)(2,14,86,17)(3,8,87,18)(4,9,88,19)(5,10,89,20)(6,11,90,21)(7,12,91,15)(22,61,43,73)(23,62,44,74)(24,63,45,75)(25,57,46,76)(26,58,47,77)(27,59,48,71)(28,60,49,72)(29,83,39,69)(30,84,40,70)(31,78,41,64)(32,79,42,65)(33,80,36,66)(34,81,37,67)(35,82,38,68)(50,104,95,106)(51,105,96,107)(52,99,97,108)(53,100,98,109)(54,101,92,110)(55,102,93,111)(56,103,94,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(8,43,31,99),(9,44,32,100),(10,45,33,101),(11,46,34,102),(12,47,35,103),(13,48,29,104),(14,49,30,105),(15,26,38,112),(16,27,39,106),(17,28,40,107),(18,22,41,108),(19,23,42,109),(20,24,36,110),(21,25,37,111),(71,95),(72,96),(73,97),(74,98),(75,92),(76,93),(77,94),(78,87),(79,88),(80,89),(81,90),(82,91),(83,85),(84,86)], [(1,50,69,59),(2,51,70,60),(3,52,64,61),(4,53,65,62),(5,54,66,63),(6,55,67,57),(7,56,68,58),(8,43,31,99),(9,44,32,100),(10,45,33,101),(11,46,34,102),(12,47,35,103),(13,48,29,104),(14,49,30,105),(15,112,38,26),(16,106,39,27),(17,107,40,28),(18,108,41,22),(19,109,42,23),(20,110,36,24),(21,111,37,25),(71,83,95,85),(72,84,96,86),(73,78,97,87),(74,79,98,88),(75,80,92,89),(76,81,93,90),(77,82,94,91)], [(1,13,85,16),(2,14,86,17),(3,8,87,18),(4,9,88,19),(5,10,89,20),(6,11,90,21),(7,12,91,15),(22,61,43,73),(23,62,44,74),(24,63,45,75),(25,57,46,76),(26,58,47,77),(27,59,48,71),(28,60,49,72),(29,83,39,69),(30,84,40,70),(31,78,41,64),(32,79,42,65),(33,80,36,66),(34,81,37,67),(35,82,38,68),(50,104,95,106),(51,105,96,107),(52,99,97,108),(53,100,98,109),(54,101,92,110),(55,102,93,111),(56,103,94,112)]])

91 conjugacy classes

class 1 2A2B2C2D4A4B4C4D···4H7A···7F14A···14F14G···14L14M···14X28A···28R28S···28AV
order122224444···47···714···1414···1414···1428···2828···28
size112444448···81···11···12···24···44···48···8

91 irreducible representations

dim1111111111224444
type+++++
imageC1C2C2C4C4C7C14C14C28C28D4C7×D4C23⋊C4C423C4C7×C23⋊C4C7×C423C4
kernelC7×C423C4C7×C23⋊C4C7×C4.4D4C4×C28Q8×C14C423C4C23⋊C4C4.4D4C42C2×Q8C22×C14C23C14C7C2C1
# reps121226126121221212612

Matrix representation of C7×C423C4 in GL4(𝔽29) generated by

23000
02300
00230
00023
,
1000
02800
00170
00017
,
12000
01700
00120
00017
,
0010
0001
0100
1000
G:=sub<GL(4,GF(29))| [23,0,0,0,0,23,0,0,0,0,23,0,0,0,0,23],[1,0,0,0,0,28,0,0,0,0,17,0,0,0,0,17],[12,0,0,0,0,17,0,0,0,0,12,0,0,0,0,17],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;

C7×C423C4 in GAP, Magma, Sage, TeX

C_7\times C_4^2\rtimes_3C_4
% in TeX

G:=Group("C7xC4^2:3C4");
// GroupNames label

G:=SmallGroup(448,158);
// by ID

G=gap.SmallGroup(448,158);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,1576,3923,3538,248,6871,375,14117]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽